

Solar Energy Concepts Review

Solar Electricity & Solar Thermodynamics

Clay Atchison Media Director The Rahus Institute

Solar Energy Concepts

1. Solar Orientation

- 2. Electrical Concepts
- 3. Thermodynamic Concepts
- 4. Passive Solar Design

Solar Orientation & Site Analysis

Seasonal Sun Paths

WHY?

23.5 degree tilt

Earth's Tilt & the Seasons

This makes it hotter in the summer - WHY?

Why is it hotter in the summer?

- 1. Sun is higher in the sky
- 2. Sunlight is more intense.
- 3. Days are longer.

What is the RED OUTLINE?

SOLAR WINDOW

To use a sun path chart:

What's the first thing you need to know?

To use a sun path chart:

TRUE SOUTH

Electrical Concepts

VOLT (FORCE)

MEASURES ELECTRICAL PRESSURE

www.solarschoolhouse.org

AMPERE (CURRENT)

MEASURES THE NUMBER OF MOVING ELECTRONS (OR ELECTRIC CHARGES)

MEASURES HOW FAST ELECTRICITY IS USED (OR GENERATED)

Solar Cell Circuits

What kind of wiring is this?

Which PORT
is the
NEGATIVE
lead ALWAYS
connected to?

The NEGATIVE lead is ALWAYS In the COM port blaCk = Com 200m 20m 200m 10ADC VΩmA COM

www.solarschoolhouse.org

SAV PAA!!

www.solarschoolhouse.org

S.A.V.

Series Adds Volts

P.A.A.

Parallel Adds Amps

www.solarschoolhouse.org

WATT-HOUR

www.solarschoolhouse.org

Watts is a RATE of energy use (like Miles Per Hour)

Watt-Hours is an AMOUNT of energy used (like miles traveled)

If this heater uses 1,000 watts...

... and it runs for 1 hour

How much electrical energy will it convert?

If this heater uses 1,000 watts...

... and it runs for 1 hour

Thermodynamic Concepts

www.solarschoolhouse.org

Heat Transfer Mechanisms?

Heat Transfer Mechanisms

- 1. Conduction
- 2. Convection
- 3. Radiation

Conduction

Convection

www.solarschoolhouse.org

Radiation

Heat Transfer
by
ELECTROMAGNETIC
WAVES

www.solarschoolhouse.org

Sun Oven

Heat Gain by Solar Radiation

Convective Heat Loss

Insulation Slows Heat Loss

Heat Loss By Conduction

Greenhouse

1.

2.

Use shade to stay cool.

3. Use thermal mass to store warmth & "coolth."

4.
Use insulation to keep heat in or out.

5. Use air to move heat coolness.

Clay Atchison Media Director Rahus Institute